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Overview 

Anomaly detection is a widely used technique to de-

tect system intrusions. Anomaly detection in Intru-

sion Detection and Prevent Systems (IDPS)  works by 

establishing a baseline of normal behavior and classi-

fying points that are at a farther distance away as out-

liers. The result is an “anomaly score”, or how much a 

point is an outlier. Recent work has been performed 

which has examined use of anomaly detection in data 

streams [1].  We propose a new incremental anomaly 

detection algorithm which is up to 57,000x faster 

than the non-incremental version while slightly sacri-

ficing the accuracy of results. We conclude that our 

method is suitable for incremental outlier detection 

on static datasets on low-resource machines such as 

satellites. 

Implementation 

The k-NN search is the most computationally expen-

sive portion of any distance-based anomaly detection 

algorithm [1]. We implemented appropriate methods 

to significantly reduce the runtime of the proposed 

technique.  

 

 

 

Background 

Several high profile aerospace attacks on low resource 

machines have occurred in the last decade. In 2008, 

two NOAA satellites experienced several minutes of 

interference and a third party achieved all steps to 

command the spacecraft systems [2]. In 2011, Iran 

hacked an American  RQ-170 and flew it into Iranian 

controlled airspace [2]. These events highlight the 

need for anomaly detection on low resource ma-

chines.  Current anomaly detection methods needed 

for intrusion detection run in quadratic runtime com-

plexity, which is difficult for low resource machines 

on large data sets.  Algorithms that process data one 

point at a time update the anomaly scores for each of 

the point’s neighbors, allowing the dataset to grow 

[3]. Applications with static datasets do not require 

these points to be updated. Local Outlier Probabili-
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Results 

Comparisons between incremental LoOP and other 

incremental anomaly detection algorithms show that 

the proposed techniques are able to perform less op-

erations and possess a faster run time while incurring 

a slight amount of error. We conclude that this incre-

mental anomaly detection scheme is best suited for 

low-resource machines that perform outlier detection 

on data streams with large and unchanging training 

data.  
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Future Work 

It would be interesting to test this method in higher 

dimensions with an approximate nearest neighbor 

search such as Local Sensitive Hashing. 
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ties (LoOP) [4] is a recent static anomaly detec-

tion algorithm. LoOP was chosen because the 

anomaly score is the probability of a point being 

an outlier in range from zero to one, making our 

proposed IDPS easier to implement. 

Proposed IDPS and Its Needs 

To understand the importance of the proposed 

algorithm, the IDPS of satellites must be consid-

ered. The proposed IDPS detects outliers in sat-

ellite sensor data, which may indicate an attack, 

such as location of the ground station, and signal 

interference and intensity levels, and other fac-

tors which are unlikely to change over time.  

 

Figure 1. LoOP in Action.  

Local Outlier Probabilities and  

Incremental Function 
 

 

Dataset size 

(K=N/2) 

 

Exact Static LoOP 

Time (ms) 

 

Technique 1  

Time (ms) 

 

Technique 2  

Time (ms) 

500 648.5 1.419 0.9362 

1000 4879 5.056 2.532 

5000 868800 183.3 48.31 

For all points, calculate 
the standard distance of 
all  k nearest neighbors  

Perform a K nearest 
neighbor search on all 

points

For all points, use their 
respective standard 

distance to calculate the 
point’s probabilistic 

distance

For all points, use the 
probabilistic distances 
to calculate a point’s 

the PLOF value

Use all of the PLOF 
values to calculate the 

nPLOF

Using the nPLOF, 
calculate the LoOP value 

for all points.

 

Data set Size 

(K=N/2) 

Technique 1 

Time (ms) 

%Error  

Exact 

Technique 2  

Time (ms) 

% Error  

Approx 

100 0.0167 1.23% 0.0139 9.25% 

500 0.1805 0.397% 0.0889 4.37% 

1000 0.7284 0.22% 0.2607 5.68% 

2500 3.868 0.0284% 1.345 5.68% 

5000 10.03 0.0268% 4.404 7.03% 

10000 30.16 0.00717% 11.87 7.56% 

20000 113.1 0.00402% 37.23 5.88% 

Figure 2. LoOP Functionality. 

Figure 3. LoOP Equations.  

Figure 4. Raspberry Pi Tests to Simulate  a 

Low Resource Machine. 

Figure 3. Static Algorithm vs Incremental Modes. 

Figure 5. Incremental Algorithm and % Error from Correct Results. 
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