
Improving Satellite Security Through Incremental Anomaly Detection on Large, Static Datasets
Connor Hamlet1, Matthew Russell2, Jeremy Straub3 , Scott Kerlin3

1Department Computer Science, University of North Carolina at Chapel Hill
2School of Engineering and Computational Sciences, Liberty University

3Department of Computer Science, University of North Dakota

Overview

Anomaly detection is a widely used technique to de-

tect system intrusions. Anomaly detection in Intru-

sion Detection and Prevent Systems (IDPS) works by

establishing a baseline of normal behavior and classi-

fying points that are at a farther distance away as out-

liers. The result is an “anomaly score”, or how much a

point is an outlier. Recent work has been performed

which has examined use of anomaly detection in data

streams [1]. We propose a new incremental anomaly

detection algorithm which is up to 57,000x faster

than the non-incremental version while slightly sacri-

ficing the accuracy of results. We conclude that our

method is suitable for incremental outlier detection

on static datasets on low-resource machines such as

satellites.

Implementation

The k-NN search is the most computationally expen-

sive portion of any distance-based anomaly detection

algorithm [1]. We implemented appropriate methods

to significantly reduce the runtime of the proposed

technique.

Background

Several high profile aerospace attacks on low resource

machines have occurred in the last decade. In 2008,

two NOAA satellites experienced several minutes of

interference and a third party achieved all steps to

command the spacecraft systems [2]. In 2011, Iran

hacked an American RQ-170 and flew it into Iranian

controlled airspace [2]. These events highlight the

need for anomaly detection on low resource ma-

chines. Current anomaly detection methods needed

for intrusion detection run in quadratic runtime com-

plexity, which is difficult for low resource machines

on large data sets. Algorithms that process data one

point at a time update the anomaly scores for each of

the point’s neighbors, allowing the dataset to grow

[3]. Applications with static datasets do not require

these points to be updated. Local Outlier Probabili-

References
[1]Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detec

 tion: A survey. ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58 pages.
 DOI=10.1145/1541880.1541882

[2]Fritz, J. Satellite hacking: A guide for the perplexed. Culture Mandala: The Bulletin of the
 Centre for East-West Cultural and Economic Studies 10(1), 3, 2013
[3]D. Pokrajac, N. Reljin, N. Pejcic and A. Lazarevic, “Incremental Connectivity-
 Based Outlier Factor Algorithm”, in BCS International Academic Conference, Lon
 don, 2008, pp. 211-223.
[4]Hans-Peter Kriegel, Peer Kröger, Erich Schubert, and Arthur Zimek. 2009.
 LoOP: local outlier probabilities. In Proceedings of the 18th ACM conference on In
 formation and knowledge management (CIKM '09). ACM, New York, NY, 1649-
 1652. DOI=10.1145/1645953.1646195

Results

Comparisons between incremental LoOP and other

incremental anomaly detection algorithms show that

the proposed techniques are able to perform less op-

erations and possess a faster run time while incurring

a slight amount of error. We conclude that this incre-

mental anomaly detection scheme is best suited for

low-resource machines that perform outlier detection

on data streams with large and unchanging training

data.

Acknowledgements

This research was funded by the U.S. National Science

Foundation (NSF Award #1359224) with support from

the U.S. Department of Defense.

Future Work

It would be interesting to test this method in higher

dimensions with an approximate nearest neighbor

search such as Local Sensitive Hashing.

0

2

4

6

8

10

12

14

0.001

0.01

0.1

1

10

100

1000

10000

100000

1000000

10000000

25 50 100 500 1000 2500 5000 10000 20000

Dataset Size Static LoOP Time

Technique 1 Time

Technique 2 Time

Technique 1 Percent Error

 Technique 2 Percent Error

K=N/2, dim=2

ties (LoOP) [4] is a recent static anomaly detec-

tion algorithm. LoOP was chosen because the

anomaly score is the probability of a point being

an outlier in range from zero to one, making our

proposed IDPS easier to implement.

Proposed IDPS and Its Needs

To understand the importance of the proposed

algorithm, the IDPS of satellites must be consid-

ered. The proposed IDPS detects outliers in sat-

ellite sensor data, which may indicate an attack,

such as location of the ground station, and signal

interference and intensity levels, and other fac-

tors which are unlikely to change over time.

Figure 1. LoOP in Action.

Local Outlier Probabilities and

Incremental Function

Dataset size

(K=N/2)

Exact Static LoOP

Time (ms)

Technique 1

Time (ms)

Technique 2

Time (ms)

500 648.5 1.419 0.9362

1000 4879 5.056 2.532

5000 868800 183.3 48.31

For all points, calculate
the standard distance of
all k nearest neighbors

Perform a K nearest
neighbor search on all

points

For all points, use their
respective standard

distance to calculate the
point’s probabilistic

distance

For all points, use the
probabilistic distances
to calculate a point’s

the PLOF value

Use all of the PLOF
values to calculate the

nPLOF

Using the nPLOF,
calculate the LoOP value

for all points.

Data set Size

(K=N/2)

Technique 1

Time (ms)

%Error

Exact

Technique 2

Time (ms)

% Error

Approx

100 0.0167 1.23% 0.0139 9.25%

500 0.1805 0.397% 0.0889 4.37%

1000 0.7284 0.22% 0.2607 5.68%

2500 3.868 0.0284% 1.345 5.68%

5000 10.03 0.0268% 4.404 7.03%

10000 30.16 0.00717% 11.87 7.56%

20000 113.1 0.00402% 37.23 5.88%

Figure 2. LoOP Functionality.

Figure 3. LoOP Equations.

Figure 4. Raspberry Pi Tests to Simulate a

Low Resource Machine.

Figure 3. Static Algorithm vs Incremental Modes.

Figure 5. Incremental Algorithm and % Error from Correct Results.

Ti
m

e
 (

m
s)

P
e

rce
n

t Erro
r

